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ABSTRACT
Hidden Markov models (HMMs) are valuable tools for analyzing longitudinal data due to their capability to
describe dynamic heterogeneity. Conventional HMMs typically assume that the number of hidden states (i.e.,
the order of HMMs) is known or predetermined through criterion-based methods. However, prior knowledge
about the order is often unavailable, and a pairwise comparison using criterion-based methods becomes
increasingly tedious and computationally demanding when the model space enlarges. A few studies have
considered simultaneously performing order selection and parameter estimation under the frequentist
framework. Still, they focused only on homogeneous HMMs and thus cannot accommodate situations where
potential covariates affect the between-state transition. This study proposes a Bayesian double-penalized
(BDP) procedure to conduct a simultaneous order selection and parameter estimation for heterogeneous
HMMs. We develop a novel Markov chain Monte Carlo algorithm coupled with an efficient adjust-bound
reversible jump scheme to address the challenges in updating the order. Simulation studies show that
the proposed BDP procedure considerably outperforms the commonly used criterion-based methods. An
application to the Alzheimer’s Disease Neuroimaging Initiative study further confirms the utility of the
proposed method. Supplementary materials for this article are available online.
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1. Introduction

Hidden Markov Models (HMMs) have broad applications in
medical, behavioral, social, and psychological sciences, wherein
heterogeneous longitudinal data are frequently collected and
analyzed. HMMs consist of two parts: a transition model to
characterize the dynamic transition process between hidden
states and a conditional regression (emission) model to examine
state-specific covariate effects on the response of interest.

Conventional HMMs typically assume that the number of
hidden states (i.e., order of HMM) is known or predetermined
through criterion-based methods, such as the Akaike’s infor-
mation criterion (AIC, Akaike 1974) and Bayesian information
criterion (BIC, Schwarz 1978). However, despite their success-
ful applications in many substantive studies (e.g., Celeux and
Durand 2008; Ip et al. 2013; Song et al. 2017), these criterion-
based methods conduct pairwise comparisons among candidate
models, which could become increasingly tedious and compu-
tationally intensive when the model space is ample. Moreover,
these procedures perform estimation in two stages: choosing
the order in the first stage and estimating the parameter of the
selected model in the second stage, and thus may not be as
effective as single-stage approaches.

Penalization methods are valuable alternatives to their
criterion-based counterparts in estimating HMMs with
unknown order. Two types of over-fitting exist in performing
estimation for HMMs. The first type arises when some hidden

CONTACT Xinyuan Song xysong@sta.cuhk.edu.hk Department of Statistics, The Chinese University of Hong Kong, Shatin, Hong Kong.
Supplementary materials for this article are available online. Please go to www.tandfonline.com/r/JCGS.

states are almost empty and thus leading to near-zero mixing
probabilities. The second type appears when two or more states
have similar emission densities resulting in nearly identical
parameter values. Chen and Khalili (2008) pointed out the
necessity of preventing the second type of overfitting induced
by similar-density components in finite mixture models and
suggested a double penalization procedure to avoid the two
types of overfitting simultaneously. Ye et al. (2019) extended
their method to a finite mixture of varying coefficient models.
Manole and Khalili (2021) developed the Group-Sort-Fuse
(GSF) procedure for order selection and parameter estimation
in multidimensional finite mixture models. For HMMs, Mackay
(2002) proposed a single penalization on small state proportions
and obtained a consistent order estimate of HMMs. Hung et al.
(2013) introduced the double penalized method to non-
regression Gaussian HMMs. Zhou et al. (2020) considered
continuous-time HMMs and proposed a modified penalized
maximum likelihood estimation approach. Lin and Song
(2022) extended the GSF procedure and adapted the double
penalization idea into regression-based HMMs. Apart from
the frequentist penalization methods, Liu and Song (2020)
also developed a Bayesian approach by regarding the order
of HMMs as a random variable and updating it with other
parameters using the reversible jump Markov chain Monte
Carlo (MCMC) algorithm (Green 1995). Nevertheless, the
available methods focused mainly on finite mixture models
or homogeneous HMMs. Moreover, all the existing double
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penalized procedures are developed under the frequentist
framework. However, unlike its frequentist counterpart, the
Bayesian approach typically converts the penalization problem
to introducing appropriate priors to relevant parameters and
updates the penalty through posterior, making the penalization
data-driven and easy to implement. Unfortunately, Bayesian
double penalization procedures have never been considered in
the literature.

This study aims to fill the gap and proposes a novel Bayesian
double penalized (BDP) procedure for the simultaneous order
selection and parameter estimation of heterogeneous HMMs.
The procedure includes two penalties. The first is a lower bound
imposed on the summation of mixing proportions to prevent
states with near-zero initial probabilities. The second is a least
absolute shrinkage and selection operator (lasso)-type penalty
introduced to the distance between regression coefficients to
avoid states with nearly identical parameters. We develop a
hybrid MCMC algorithm that integrates the data augmenta-
tion, Gibbs sampler, forward filtering backward sampling (FFBS,
Baum et al. 1970), and the Metropolis-Hastings (MH) algorithm.
In particular, we offer an efficient adjust-bound reversible jump
(ABRJ) sampling scheme to address the challenges of updating
the order in implementing the MCMC algorithm. Simulation
studies in Section 5 demonstrate that the proposed BDP pro-
cedure considerably outperforms the commonly used AIC and
BIC in order selection accuracy and two existing one-stage
methods in state allocation accuracy. In addition, by setting a siz-
able upper bound of the order (e.g., 200), the proposed method
allows sufficient flexibility in estimating the order of HMMs and
thus can accommodate the case where many states exist. Last but
not least, the BDP procedure accomplishes order selection and
parameter estimation in a single stage. By contrast, criterion-
based approaches perform pairwise comparison and parameter
estimation on a two-stage basis, and the related computational
burden dramatically increases when the candidate model space
enlarges. Therefore, the proposed BDP procedure is also supe-
rior to the criterion-based methods in terms of computational
efficiency.

The rest of this article is organized as follows. Section 2
describes the model and related identifiability issues. Sections 3
and 4 present the BDP procedure and specific sampling schemes.
Section 5 evaluates the empirical performance of the proposed
method through simulation studies, and Section 6 reports an
application to the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) study. Section 7 concludes the article. The technical
details are provided in the supplementary material.

2. Model

Let Y = (y1′, . . ., yn′)′, where yi = (yi1, . . ., yiT)′, and yit is the
response of subject i at time t; X = (X′

1, . . ., X′
n)

′, where Xi =
(x′

i1, . . ., x′
iT)′, and xit is the covariate vector of subject i at time t;

D = (D′
1, . . ., D′

n)
′, where Di = (d′

i1, . . ., d′
iT)′, and dit is another

covariate vector of subject i at time t, and the elements of dit can
be distinct or overlapped with those of xit ; Z = (Z1′, . . ., Zn′)′,
where Zi = (Zi1, . . ., ZiT)′, and Zit is the hidden state of subject i
at occasion t, which follows a first-order Markov chain and takes
the values of {1, . . ., K}. Given the hidden state Zit , yit is assumed

to be independent for all i and t, and is formulated through the
conditional regression model as follows:

[yit|Zit = s] = β ′
sxit + δit , (1)

where xit = (1, xit1, . . ., xit,p−1)
′ be the p×1 vector of covariates,

βs is the p × 1 vector of state-specific regression coefficients,
δit is the residual term independent of xit , and [δit|Zit = s] ∼
N(0, ψs).

Given that hidden states typically have a natural ranking and
real meanings in most practical situations, we assume that hid-
den states {1, . . ., K} are ordered. The hidden transition process
is then formulated by Zi1 ∼ multinomial(π1, . . ., πK) such that
0 ≤ πs ≤ 1 and

∑K
s=1 πs = 1, and a continuation-ratio

logit model (Agresti 2003) as follows: for t = 2, . . ., T, s =
1, . . .K − 1, u = 1, . . ., K:

log
( Pitus

Pitu,s+1 + · · · + PituK

)
= ζus + α′dit , (2)

where Pitus = P(Zit = s|Zi,t−1 = u), ζus is a transition-specific
intercept, α = (α1, . . . , αq)′ is a q × 1 vector of regression coef-
ficients. Let ϑitus = P(Zit = s|Zit ≥ s, Zi,t−1 = u). Then, we can
easily check that log

( Pitus
Pitu,s+1+···+PituK

) = log
(P(Zit=s|Zi,t−1=u)

P(Zit>s|Zi,t−1=u)

) =
logit(ϑitus), which is the log conditional odds of transitioning
to the sth state instead of a higher state given Zi,t−1 = u.
Therefore, the transition model (2) can be equivalently rewritten
as logit(ϑitus) = ζus + α′dit .

Equations (1) and (2) define a heterogeneous HMM, under
which some time-variant or baseline covariates affect the
between-state transition. Let θ be the vector containing all the
regression and variance parameters in the proposed model.
Then, the complete-data log-likelihood function of the proposed
model is given by

log p[Y , X, D, Z|θ] =
n∑

i=1
[log p(yi|Xi, Zi, θ)+ log p(Zi|Di, θ)]

=
n∑

i=1

T∑
t=1

log p(yit|xit , Zit , θ) +
n∑

i=1

T∑
t=2

log p(Zit|Zi,t−1, dit , θ)

+
n∑

i=1
log p(Zi1|θ)

=
n∑

i=1

T∑
t=1

log p(yit|xit , Zit , θ) +
n∑

i=1

T∑
t=2

log(PitZi,t−1Zit )

+
n∑

i=1
log(Pi10Zi1)

(3)

where
Pi10s = πs, s = 1, . . ., K,

Pitu1 = exp(aitu1)

1 + exp(aitu1)
, PituK =

K−1∏
j=1

1
1 + exp(aituj)

,

Pitus = exp(aitus)

1 + exp(aitus)

s−1∏
j=1

1
1 + exp(aituj)

, s = 2, . . ., K − 1

(4)
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with aitus = ζus + α′dit , for t = 2, . . ., T, u = 1, . . ., K, s =
1, . . ., K − 1.

The proposed model is unidentifiable due to the label switch-
ing problem. Label switching arises because a random permu-
tation of state labels does not change the likelihood function,
which leads to a multi-modal posterior under a symmetric
prior distribution. We address the problem by introducing the
cluster ordering procedure proposed by Zhou et al. (2020)
to sort the multidimensional parameters in the conditional
regression model (1), which satisfies the atom property men-
tioned in Manole and Khalili (2021). We define the cluster
ordering procedure in the context of the proposed model as
follows.

Definition 2.1. A cluster ordering procedure is a mapping αβ :
{β1, . . ., βK}→{β(1), . . ., β(K)}, such that

β(1) = arg max
β j:j=1,...,K

||β j||2

β(k) = arg min
β j �=β(i),i=1,...k−1

||β j − β(k−1)||2, k = 2, . . ., K,
(5)

where || · ||2 denotes the L2 norm.

The above cluster ordering procedure incorporates the ideas
from Zhou et al. (2020). The difference is that they number the
parameter with the smallest L2 norm as state one while we take
the largest as the first. This procedure guarantees that the state
labels are uniquely determined and induces a set of differences
η1 = β(1), and ηk = β(k) − β(k−1) for k = 2, . . . , K. Recall that
the hidden states are assumed ordered; we can then rewrite the
conditional regression model (1) as follows:

[yit|Zit = s] =
s∑

k=1
(η′

kxit) + δit . (6)

Hence, by constructing the bijective mapping between βk and
ηk, the complete-data log-likelihood function can be formulated
as

n∑
i=1

T∑
t=1

(
yit −

s∑
k=1

η′
kxit

)2 −
n∑

i=1

T∑
t=2

log(Pitus) −
n∑

i=1
log(Pi10s),

(7)

which facilitates the double penalization in the next section.

3. Bayesian Double Penalized (BDP) Procedure

In analyzing HMMs, we must tackle two types of over-fitting:
nearly empty states and redundant states. To prevent the first
type of overfitting, we impose a lower bound on πk to ensure
the existence of a proper partition and avoid nearly empty
states or near-zero mixing proportions. Under the Bayesian
framework, the lower-bound penalization is implemented by
assigning a symmetric Dirichlet prior distribution to π , denoted
as (π1, . . . , πK) ∼ Dir(cK , . . . , cK), where the concentration
parameter cK = c n

K and c > 0 is a preassigned con-
stant. With such a prior specification, we have the following
proposition:

Proposition 3.1. Suppose Zi ∼ categorical(π1, . . ., πK), i =
1, . . ., n, with 0 ≤ πs ≤ 1,

∑K
s=1 πs = 1, and π =

(π1, . . ., πK) ∼ Dir(cK , . . . , cK), where cK = c n
K , c > 0 is a

constant. Then, we have

E(πs|Z) ≥ c
c + 1

1
K

, s = 1, . . . , K. (8)

The derivation of Proposition 3.1 is provided in the supple-
mentary material. This proposition ensures that the conditional
mean of each element of π is lower bounded by c

c+1
1
K , thereby

preventing near-zero probabilities or nearly empty states. The
constant c can be determined according to the degree of penalty
required for specific problems. The lower bound of E(πs|Z) is
close to 1

K when c increases while it tapers off when c approaches
zero.

To address the second type of overfitting, we impose penal-
ization on the norm of the discrepancy between different coef-
ficient vectors. Manole and Khalili (2021) pointed out that
the ordering procedure considerably outperforms the naive
approach that penalizes all pairwise differences between βk
when many hidden states exist. Therefore, instead of naively
penalizing all

(K
2
)

pairwise differences between βk, k = 1, . . . , K,
we only penalize the L2-norm of K − 1 consecutive differences
ηk. Notably, ηk = β(k) − β(k−1); if ‖ηk‖2 = 0, then β(k) =
β(k−1), implying that states k and k − 1 are redundant. Thus, we
penalize ‖ηk‖2 for preventing redundant states. Park and Casella
(2008) introduced the Bayesian lasso to achieve shrinkage on
regression coefficients by assigning them a conditional Laplace
prior. Based on this idea, we modify the Bayesian lasso by
introducing the conditional Laplace prior to ||ηk||2 to achieve
shrinkage on the entire vector ηk as follows:

P(ηk|ψk) = γk
2
√

ψk
exp

( − γk√
ψk

||ηk||2
)
, k = 2, . . . , K. (9)

Then, the proposed model can be formulated through the fol-
lowing hierarchical representation: for s = 1, . . . , K,

[yit|Zit = s, η1, . . ., ηs, ψs] ∼ N

( s∑
k=1

(
η′

kxit
)

, ψs

)
,

[ηs|ψs, τ 2
s ] ∼ N(0, ψsτ

2
s Ip), ψ−1

s
ind∼ Gamma(aψs0, bψs0),

τ 2
s

ind∼ Gamma(
p + 1

2
,
γ 2

s
2

), γ 2
k

ind∼ Gamma(aγ k0, bγ k0),

k = 2, · · · , K,
(10)

where 0 is the vector of zero elements, Ip is the p-dimensional
identify matrix, aψs0, bψs0, aγ k0, and bγ k0, are hyperparameters
whose values are prespecified.

Proposition 3.2. Under the hierarchical model (10), the condi-
tional prior distribution of ηk has the form of (9).

The derivation of Proposition 3.2 is provided in Appendix 1
of supplementary material. Notably, (9) modifies the conditional
Laplace prior proposed by Park and Casella (2008) and plays a
similar role to the Bayesian lasso penalty to achieve shrinkage
on ηk. Moreover, it introduces a state-specific tuning parameter
γk to each ‖ηk‖2 and penalizes the L2 norm of the entire vector



4 Y. ZOU, Y., LIN, AND X. SONG

ηk rather than its elements. Therefore, the penalty in (9) is
adaptive and group-wise, denoted as a modified adaptive group
lasso (MAGlasso) penalty. The MAGlasso procedure aims to
update the tuning parameters by exploiting the data, thereby
automatically imposing large penalties on unimportant coef-
ficients. This target can be naturally achieved by introducing
dispersed priors with small hyperparameters aγ k0 and bγ k0.
The degree of dispersion of the gamma priors determines the
magnitudes of penalties imposed on unimportant components.
Typically, setting aγ k0 to a positive integer (e.g., 1) and bγ k0 to
a small value (e.g., 0.1 or 0.01) can induce a dispersed gamma
prior. With this prior specification, we can derive the posterior
distribution of the tuning parameters, which have the following
forms:

[τ−2
s |·] ∼ Inverse-Gaussian

{√
γ 2

s ψs

||ηs||22
, γ 2

s

}
, (11)

[γ 2
s |·] ∼ Gamma

(
aγ s0 + p + 1

2
, bγ s0 + τ 2

s
2

)
. (12)

If ||ηs||2 is significant, τ 2
s tends to be large based on (11). Then,

the corresponding γs is dominated by τ 2
s based on (12). On the

contrary, if ||ηs||2 is insignificant, τ 2
s tends to be small, and the

related γs is then dominated by the dispersed prior.
Considering that the Bayesian lasso does not shrink coeffi-

cients precisely to zero, we need a criterion to quantify the close-
ness of ||ηs||2 to a zero vector. Based on the specification of (9),
we can show that P(ηs|Y , , θ) ∼ N(η∗

s , �∗
s ), where η∗

s and �∗
s are

provided in Appendix 2 of supplementary material. Therefore,
the squared Mahalanobis distance d2

s = (η−η∗
s )

′�∗−1
s (η−η∗

s ) ∼
χ2

p determines a hyper-ellipse density contour centered at η∗
s . In

this study, we adopt the 95% highest posterior credible region
(HPCR) criterion (Harper and Hooker 1976) or equivalently the
smallest region covering 95% of posterior probability mass. ηs is
regarded as redundant if its 95% HPCR covers 0. Alternatively,
we can transform the decision rule to a direct comparison of the
squared Mahalanobis distance between 0 and η∗

s with a critical
value of χ2

p , that is, if η∗′
s �∗−1

s η∗
s ≤ χ2

p,0.05, then ηs is redundant;
otherwise, it is significant.

4. Posterior Sampling

4.1. Tuning Parameters and Other Prior Specification

This section introduces how to tune the parameters in the prior
distribution to facilitate double penalization and sets a proper
prior for the parameters not discussed in Section 3.

As discussed in Section 3, we assign a Dirichlet prior to π =
(π1, . . . , πK)′ to prevent empty states as follows:

(π1, . . ., πK) ∼ Dir(cK , . . ., cK), cK = c
n
K

, (13)

where c is a hyperparameter. The constant c can be determined
according to the degree of penalty required for specific prob-
lems. Typically, c around 0.5 can effectively prevent near-zero
πs. Alternatively, one can regard c as another tuning parameter
and update it in the MCMC algorithm. However, our numerical

results show that this data-driving method increases computa-
tional complexity but performs similarly to the approach that
fixes c in the interval of (0, 1). Moreover, setting a moderate value
in (0, 1) can avoid an extreme (too small or too large) penalty
on the mixing probabilities. Based on our extensive simulation
study, a value around 0.5 performs satisfactorily.

Furthermore, we introduce the conditional Laplace prior
(9) to ‖ηk‖2 to prevent redundant states with almost identical
parameter values. The proposed model can then be formulated
through the hierarchical representation (10). For the tuning
parameter γk involved in (9) or (10), we assign the following
dispersed gamma prior:

γ 2
k

ind∼ Gamma(aγ k0, bγ k0), k = 2, . . . , K, (14)

where aγ k0 and bγ k0 are hyperparameters whose values are
prespecified to achieve a highly dispersed prior. The degree of
dispersion determines the magnitude of the penalty on unim-
portant regression parameters. In this study, we follow the com-
mon practice (Guo et al. 2012; Kang et al. 2019) to set aγ k0 = 1
and bγ k0 = 0.01.

For other parameters involved in the transition model (2), we
assign conjugate priors:

ζus
ind∼ N(ζus0, σ 2

us0), αk
ind∼ N(αk0, �αk0), k = 1, . . . , q,

(15)
where ζus0, σ 2

us0, αk0, and �2
αk0 are hyperparameters with pre-

specified values. The common practice is to set ζus0 and the
elements of αk0 to zero and assign σ 2

us0 and the diagonal elements
of �αk0 to large values to induce vague priors if the preliminary
information about ζus and αk is unavailable.

4.2. MCMC Algorithm

Unlike conventional HMMs that prespecify K, this study
regards K as another unknown parameter and updates it with
other model parameters in θ . The Bayesian estimate of (θ , K)

can be obtained through the mean of the posterior samples
drawn from P(θ , K|Y , X, D). However, P(θ , K|Y , X, D) involves
unknown hidden states, leading to intractable sampling from
P(θ , K|Y , X, D). Using the data augmentation technique, we
instead work on P(Z, θ , K|Y , X, D). However, the joint poste-
rior distribution P(Z, θ , K|Y , X, D) is still complex. Thus, the
Gibbs sampler is employed to iteratively update each com-
ponent through sampling from its full conditional distribu-
tion as follows: (a) update hidden states by sampling Z from
P(Z|Y , X, D, θ , K), (b) update the model parameters by sam-
pling θ from P(θ |Y , X, D, Z, K), and (c) update the order K by
sampling from P(K|Y , X, D, Z, θ). Owing to the transitioning
features of hidden states and nonlinearity of the transition model
(2), steps (a) and (b) require MCMC techniques, such as the
FFBS and MH algorithms. The full conditional distributions
involved in steps (a) and (b) are derived in Appendix 2 of
supplementary material. Step (c) is the so-called ABRJ step,
which allows K to be updated at each MCMC iteration as follows.

Let (Kmin, Kmax) be the lower and upper bounds of K, and
(K(0)

min, K(0)
max) and (K(j)

min, K(j)
max) be their values at the initial stage

and jth iteration of the MCMC algorithm. Typically, we set
K(0)

min = 2 and K(0)
max to a relatively large positive integer (e.g.,
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100 or 200) to allow sufficient flexibility in updating K. At the
(j + 1)th iteration, K(j+1) can remain unchanged, increase, or
decrease by 1. To update K(j), we first locate a state s∗, such
that s∗ = argmins=1,...K(j) ||η(j)

s ||2. Then, we calculate d2
s∗ =

η
(j)′
s∗ �

(j)−1

s∗ η
(j)
s∗ and compare d2

s∗ with χ2
p,0.05. If d2

s∗ ≤ χ2
p,0.05, we

regard this component as redundant and update K(j) downward
to K(j+1) = max(K(j) − 1, K(j)

min). Meanwhile, we adjust K(j)
max

as K(j+1)
max = min(K(j)

max, K(j)). If d2
s∗ > χ2

p,0.05, we regard this
component as necessary. Then, we jump K(j) upward to K(j+1) =
min(K(j)+1, K(j)

max−1). If d2
s∗ > χ2

p,0.05 but K(j) = K(j)
max−1, then

K(j) remains unchanged, that is, K(j+1) = K(j). Figure 1 shows
the strategy of updating K in the ABRJ step. A pseudocode for
implementing the MCMC algorithm is given below.

It should be noted that the two penalties in the suggested
strategy target potential overfitting difficulties without providing
adequate solutions for underfitting concerns. As a result, the
initial upper bound should be a relative large number and the
effect of order selection occurs when jumping in an upside-down
manner.

5. Simulation Study

This section includes three simulations to demonstrate the effec-
tiveness of the proposed algorithm in order selection and param-
eter estimation under various scenarios. Simulation 1 evaluates
the performance of the proposed method in the case of K = 2,
Simulation 2 assesses estimation performance for HMMs with
higher orders, and Simulation 3 focuses on order selection and
compares the proposed method with AIC and BIC.

5.1. Simulation 1

This simulation considers a 2-state HMM with p = 4 and q = 1.
Two sample sizes, (n, T) = (50, 4), (200, 4), are considered.
In each setting, 100 datasets are generated from the following
model:

[yit|Zit = s] = β ′
sxit + δit ,

logit(ϑitus) = ζus + αdit ,
(16)

where xit = (1, xit1, xit2, xit3)′, xit1
ind∼ N(0, 1), xit2

ind∼ U(−1, 1),
U(−1, 1) denotes the uniform distribution in (−1, 1), xit3

ind∼

Figure 1. Strategy of updating K in the ABRJ step (c).

Algorithm 1 MCMC algorithm for the estimation of heterogeneous HMMs

Data: Y , X, D, J, K(0)
min, K(0)

max � J denotes the total number of iterations
1: K(0) = K(0)

min
2: for j = 1 to J do
3: Update Z(j) by sampling from P(Z|Y , X, θ (j), K(j)) � FFBS algorithm
4: Update θ (j) by sampling from P(θ |Y , X, Z, K(j)) � see details in Appendix B
5: s∗ = argmins=1,...,K(j) ||η(j)

s ||2
6: η

(j)
s∗ = E(ηs∗ |Y , X, Z, K(j)) � posterior mean vector

7: �
(j)
s∗ = var(ηs∗ |Y , X, Z, K(j)) � posterior covariance matrix

8: d2
s∗ = η

(j)′
s∗ �

(j)
s∗

−1
η

(j)
s∗

9: if d2
s∗ < χ2

p,0.05 then
10: K(j+1) = max(K(j) − 1, K(j)

min)

11: K(j+1)
max = min(K(j), K(j)

max)
12: else if d2

s∗ ≥ χ2
p,0.05 then

13: K(j+1) = min(K(j)
max − 1, K(j) + 1)

14: if K(j) = K(j)
max − 1 then

15: K(j+1) = K(j)

16: end if
17: end if
18: j = j + 1
19: end for
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Bernoulli(0.6), and dit
ind∼ N(0, 1). The true population values

of the parameters are set as follows: β1 = (2, 2, 1, 1)′, β2 =
(0, 1, 2, −1)′, ψ1 = ψ2 = 0.25, π1 = π2 = 0.5, ζ = (ζ11, ζ21) =
(−2, 2)′, and α = −1.

The hyperparameters of the prior distributions in (13)–(15)
are specified as follows (Prior I): aψs0 = 9, bψs0 = 4, aγ k0 = 1,
bγ k0 = 0.1, c = 0.5, αk0 = ζus0 = 0, and σ 2

αk0 = σ 2
us0 = 1.

In implementing the MCMC algorithm, we impose a constraint
described in Definition 2.1 (i.e., β(1) > β(2)) to each MCMC
iteration to avoid label switching. Moreover, we set K(0)

min = 2
and K(0)

max = 200, which provides an extensive range for K. The
algorithm’s convergence is checked through the trace plots of the
parameters. Figure 2(a) presents the trace plots of three MCMC
chains of K starting from different initial values in an arbitrarily
selected replication. The three MCMC chains of K mix rapidly
and converge to the true value K0 = 2 within a few iterations.
Figure S1 of supplementary material presents the trace plots of
three MCMC chains for other randomly selected parameters.
Both figures indicate a fast convergence of the MCMC algo-
rithm. To be conservative, we collect 10,000 posterior samples,

discard the first 3000 iterations as burn-in, and calculate the
bias and root mean square error (RMS) between the parameter
estimates and their true values based on the remaining 7000
posterior samples corresponding to the selected order. Table 1
presents the estimation result. The bias and RMS are close
to zero, and the performance improves when the sample size
increases.

To reveal the sensitivity of Bayesian estimates to the prior
input, we disturb the hyperparameters as follows (Prior II):
aψs0 = 13, bψs0 = 6, aγ k0 = 1, bγ k0 = 0.01, c = 0.3,
αk0 = ζus0 = 2, and σ 2

αk0 = σ 2
us0 = 100. Table S1 of Sup-

plementary Material reports the obtained results. The parameter
estimates perform similarly to those in Table 1, indicating that
the proposed Bayesian estimation is insensitive to the disturbed
prior considered.

Furthermore, we check the sensitivity of Bayesian estimation
to the misspecification of the distribution of δit by consider-
ing two nonnormal cases: (1) δit ∼ U(−1, 1) and (2) δit ∼
0.4N(1, 1) + 0.6N(−1, 1). We simulate 100 datasets from the
proposed model with n = 200 and δit drawn from case (1)
or (2). The hyperparameters and other settings are the same as

Figure 2. Trace plots of three MCMC chains of K in simulations and the ADNI study.
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Table 1. Parameter estimates under Prior I in Simulation 1: K0 = 2.

n = 50 n = 200

State 1 State 2 State 1 State 2

Par Bias RMS Par Bias RMS Par Bias RMS Par Bias RMS

Parameters in the conditional regression model

β11 0.034 0.049 β12 −0.026 0.069 β11 0.007 0.030 β12 −0.006 0.040
β21 −0.002 0.032 β22 −0.001 0.035 β21 −0.003 0.035 β22 0.014 0.029
β31 0.020 0.055 β32 −0.018 0.051 β31 0.001 0.019 β32 −0.017 0.026
β41 −0.020 0.083 β42 0.045 0.070 β41 −0.022 0.050 β42 0.015 0.042
ψ1 0.020 0.042 ψ2 0.038 0.058 ψ1 0.009 0.016 ψ2 0.008 0.022

Parameters in the transition model

ζ11 0.030 0.168 ζ21 −0.040 0.155 ζ11 −0.008 0.096 ζ21 −0.028 0.115
π1 −0.007 0.052 π2 0.007 0.052 π1 −0.001 0.020 π2 0.001 0.020
α1 0.020 0.107 α1 0.010 0.085

in Simulation 1. Table S2 of Supplementary Material presents
the estimation results obtained under the two nonnormal cases.
Except for the variance of δit and some parameters involved
in the transition model, most parameter estimates are robust
to the violation of the normality assumption of δit . Therefore,
the impact of misspecifying the distribution of δit is mainly on
estimating its variance.

5.2. Simulation 2

This simulation examines estimation performance for higher-
order models and a model with unordered states. We first con-
sider a 3-state HMM. Covariates xit is the same as in Simulation
1. For simplicity, we set dit = x∗

it , where x∗
it is the subvector of

xit excluding 1. Two sample sizes, (n, T) = (200, 6) and (400, 6),
are considered. The true population values of the parameters are
set as β1 = (3, 3, 3, 3)′, β2 = (0, 1, 2, 2)′, β3 = (−4, 2, 1, 1)′,
ψ = (0.25, 0.25, 0.25)′, π = (0.3, 0.4, 0.3)′, ζ 1 = (−1, −1, −1)′,
ζ 2 = (1, 1, 1)′, α = (1, −1, −1)′. The prior specification and
simulation settings are similar to Simulation 1, except that the
hyperparameters for α are set as αk0 = 0 and �αk0 = I3.
Figure 2(b) presents the trace plots of three MCMC chains of
K starting from different initial values in an arbitrarily selected
replication. Again, the MCMC chains mix and converge to the
true value of K0 = 3 rapidly. The trace plots of other parameters
(Figure S2 of supplementary material) suggest that the algo-
rithm converges within 3000 iterations. Therefore, we discard
3000 burn-in and use the remaining 7000 posterior samples to
obtain the Bayesian estimates of the parameters. Table S3 of
Supplementary Material shows the estimation results based on
100 replications under (n, T) = (200, 6), indicating that the
proposed method performs satisfactorily in bias and RMS. The
results under (n, T) = (400, 6) are further improved and not
reported.

Next, we further increase the order to K0 = 5. We consider
a 5-state HMM with covariates xit = (1, xit1, xit2)′, where
xit1

ind∼ N(0, 1) and xit2
ind∼ U(−1, 1), and dit = x∗

it . The
other model setup is the same as above. The true population
values of unknown parameters are set as β1 = (5, 5, 5)′, β2 =
(3, 4, 3)′, β3 = (0, 3, 4)′, β4 = (−2, 4, 3)′, β5 = (−5, 5, 2)′,
ψ = (0.25, 0.25, 0.25, 0.25, 0.25)′, π = (0.2, 0.2, 0.2, 0.2, 0.2)′,
ζ 1 = (−2, −2, −2, −2, −2)′, ζ 2 = (−1, −1, −1, −1, −1)′,

ζ 3 = (1, 1, 1, 1, 1)′, ζ 4 = (2, 2, 2, 2, 2)′, α = (2, 1)′. The
prior and simulation settings are similar to those given above.
Figure 2(c) presents the trace plots of three MCMC chains of
K starting from different initial values in an arbitrarily selected
replication, showing that the iterative K quickly converges to its
true value K0 = 5. The trace plots of other parameters (Figure
S3 of supplementary material) suggest that the MCMC chains
mix well within 4000 iterations. Thus, we discard 4000 burn-
in and use the remaining 6000 posterior samples to obtain the
Bayesian estimates of the parameters. Table S4 of supplementary
material presents the estimation results under (n, T) = (200, 6),
indicating that the proposed method performs satisfactorily in
order selection and parameter estimation when K0 increases to
5. The results under a larger size of (n, T) = (400, 6) are better
and not reported.

To accommodate the scenario when a hidden state may rep-
resent a political belief or something unordered, we adapt the
transition model (2) to a multinomial logit model and conduct
the analysis. Table S5 of supplementary material presents the
estimation results. Although the bias and RMS are slightly larger
than those in Table 1 due to a more complicated transition
model, they still show the satisfactory performance of the pro-
posed method. Moreover, Figure S5 indicates that three MCMC
chains of K starting from different initial values mix rapidly and
converge to the true value K0 = 2.

5.3. Simulation 3

This simulation assesses the performance of order selection.
Considering that no existing methods can simultaneously esti-
mate the order and model parameters of heterogeneous HMMs,
we compare the proposed BDP procedure with criterion-based
approaches, AIC and BIC, in order selection accuracy.

Table 2 presents the proportions of correct order selections
calculated based on 100 replications with K0 = {3, 4, 5} and
n = {100, 200, 400}. The results show that the proposed BDP
procedure consistently outperforms AIC and BIC in all the
scenarios considered. In general, the performance of the three
methods improves when the sample size increases but declines
when K0 increases. In particular, AIC and BIC perform poorly
when K0 = 5 regardless of the sample size; their correct
selection proportions are below or around 0.5. By contrast,
our proposed method performs much better, and its correct
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Table 2. Proportions of correct order selections among 100 replications.

n = 100 n = 200 n = 400

K0 K̂ AIC BIC BDP AIC BIC BDP AIC BIC BDP

3 2 0 0 0.13 0 0 0.10 0 0 0
3 0.70 0.76 0.87 0.69 0.80 0.82 0.78 0.98 1
4 0.18 0.22 0 0.25 0.20 0.08 0.20 0.02 0
5 0.12 0.02 0 0.06 0 0 0.02 0 0

4 2 0 0 0.11 0 0 0.02 0 0 0
3 0 0 0.16 0 0 0.21 0 0.12 0.09
4 0.45 0.66 0.73 0.55 0.60 0.77 0.67 0.67 0.85
5 0.30 0.31 0 0.30 0.25 0 0.21 0.09 0.06
6 0.25 0.03 0 0.15 0.15 0 0.12 0.12 0

5 3 0 0 0.16 0 0 0.04 0 0 0.13
4 0.24 0.28 0.23 0.18 0.21 0.15 0.07 0.14 0.06
5 0.36 0.40 0.61 0.47 0.50 0.77 0.55 0.59 0.81
6 0.32 0.28 0 0.29 0.26 0.04 0.21 0.10 0
7 0.08 0.04 0 0.06 0.03 0 0.17 0.17 0

selection proportion attains 0.81 when n = 400. This com-
parison confirms that our procedure achieves higher accuracy
than the conventional criterion-based approaches. In addition,
unlike the two-stage methods that perform order selection
and parameter estimation in two stages, our proposed method
accomplishes the two tasks in a single stage. Moreover, our pro-
cedure guarantees that sampling only occurs when the states are
necessary and retained. Hence, its advantages in computational
efficiency over existing ones become increasingly pronounced
when the candidate model space enlarges.

Per an anonymous referee’s suggestion, we also compare the
BDP procedure with two existing one-stage methods offered by
Lin and Song (2022) and Liu and Song (2020). Since these two
available methods assumed that the between-state transition is
homogeneous, the heterogeneity is ignored when applying them
to the generated 100 datasets in Simulation 1. In addition, we
generate 100 datasets from a homogeneous model by setting α =
0 in the transition model (2). Table S6 of supplementary material
presents the comparison results, from which we have two find-
ings. First, the three approaches perform comparably in order
selection, and our method performs better than Lin’s, especially
in the heterogeneous case, but slightly worse than Liu’s. Second,
our method significantly outperforms the other two in estimat-
ing hidden states, especially for heterogeneous data. This result
is anticipated, given that the other two approaches disregard
heterogeneity. Finally, it is worth mentioning that despite the
excellent performance of Liu’s method in order selection, it
performs the poorest in state allocation accuracy, likely due to
its constant switching between states and unstable allocation of
each individual. Therefore, the comparison results demonstrate
the advantages of the proposed method in handling both homo-
geneous and heterogeneous scenarios.

6. Real Data Analysis

In this section, we applied the proposed method to the dataset
extracted from the ADNI study to demonstrate the practical
utility of the proposed method. ADNI is a longitudinal multi-
center study that began in 2004, collecting various participants’
imaging and clinical assessments. More information is referred
to the official website: www.adni-info.org.

We focused on 616 subjects collected from the ADNI study
with four follow-up visits, namely, the baseline, six months, 12
months, and 24 months. Alzheimer Disease Assessment Scale-
Cognitive 13 (ADAS13), which reflects cognitive impairment
in AD assessment, is treated as response yit . Generally, a high
ADAS13 score indicates low cognitive ability. In addition, some
clinical and genetic variables were considered as covariates.
One is a time-variant continuous variable, xit1: the logarithm of
the ratio of hippocampal volume over the whole brain volume
(HIP). Other covariates include APOE-ε4, coded as 0, 1, 2,
denoting the number of APOE-ε4 alleles and represented by
xit2 (xit2 = 1 if carrying one allele and 0 otherwise) and xit3
(xit3 = 1 if carrying two alleles and 0 otherwise), patients’
age at baseline, xit4, and patients’ gender, xit5 (xit5 = 1 if
female). In this study, we assume The main goal of this study is
to simultaneously identify the number of hidden states and the
state-specific relationship between ADAS 13 and its important
risk factors.

The prior specification and other settings are similar to the
simulation study. We imposed constraint described in Definition
2.1 to each MCMC iteration to avoid label switching. The trace
plots of K shown in Figure 2(d) indicte that the MCMC chains
of K from different initial values quickly converge to K = 4, sug-
gesting a 4-state HMM for the data. Figure S4 of Supplementary
Material presents the trace plots of other parameters involved
in the selected model. The MCMC chains mixed well within
5000 iterations. Thus, we discarded 5000 burn-in iterations
and used the remaining 5000 posterior samples to obtain the
parameter estimates. Table 3 presents the parameter estimates
of the selected 4-state HMM. Based on the results, we have the
following observations.

First, the state-specific intercept β1s exhibits an ascending
trend. Patients have the lowest ADAS mean score in state 1
and highest mean score in state 4. According to the existing
literature (Kantarci et al. 2013), states 1 to 4 can be interpreted as
CN, early mild cognitive impairment (MCI), late MCI, and AD
accordingly.

Second, HIP (β2s) exerts an adverse effect on ADAS13, imply-
ing that a sizable hippocampal volume is associated with a low
ADAS13 score and thus high cognitive ability. Moreover, the
magnitude of the HIP effect on ADAS13 increases from CN to
AD, implying that hippocampal atrophy continuously impairs
patients’ cognitive ability during AD progression. The published
medical reports (e.g., Dickerson and Wolk 2013) also revealed
that the loss of hippocampal volume significantly affects AD.

Third, the effects of APEP-ε4 (β3s and β4s) on ADAS13 are
positive, suggesting that carrying APOE-ε4 increases AD risk,
and such impact becomes increasingly pronounced with the
disease progression. This finding is in line with the medical
report (Risacher et al. 2015) that APOE-ε4 is a crucial biomarker
of AD. Furthermore, the magnitude of β4s is larger than β3s
for s = 1, . . . , 4, implying that carrying two alleles, in general,
impairs cognitive function more significantly than carrying only
one allele. Besides, patients’ age and gender do not substan-
tially affect ADAS13 when controlling hippocampal volume and
APOE-ε4. An exception lies in β64 = 0.399(0.101), which
suggests that females suffer more severe cognitive decline than
males in the late AD progression period. This result again agrees
with the existing literature (e.g., Via et al. 2010; Kang et al. 2019).

www.adni-info.org
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Table 3. Parameter estimation results for ADNI study.

Parameters in the conditional regression model

Parameters State 1 State 2 State3 State 4
Est(sd) Est(sd) Est(sd) Est(sd)

Intercept −0.803(0.037) −0.191(0.059) 0.521(0.089) 1.559(0.114)
HIP −0.164(0.036) −0.281(0.048) −0.301(0.042) −0.331(0.090)
1 APOE-ε4 0.039(0.035) 0.135(0.056) 0.198(0.098) 0.253(0.116)
2 APOE-ε4 0.263(0.073) 0.542(0.136) 1.138(0.096) 1.906(0.202)
Age −0.070(0.094) 0.035(0.037) 0.061(0.048) 0.037(0.062)
Female −0.029(0.031) 0.046(0.051) 0.093(0.068) 0.399(0.101)
ψ 0.094(0.008) 0.101(0.007) 0.136(0.013) 0.421(0.049)

Parameters in the transition model

Parameters Est(sd) Parameters Est(sd) Parameters Est(sd)
Intercept11 2.863(0.255) Intercept12 3.130(0.806) Intercept13 −0.762(0.852)
Intercept21 −2.217(0.234) Intercept22 3.652(0.462) Intercept23 2.089(0.511)
Intercept31 −3.867(0.450) Intercept32 −1.701(0.320) Intercept33 3.941(0.542)
Intercept41 −3.537(0.479) Intercept42 −3.343(0.431) Intercept43 −2.271(0.441)
Probability1 0.322(0.023) Probability2 0.314(0.019) Probability3 0.224(0.017)
Probability4 0.140(0.013) HIP −0.139(0.099) 1 APOE-ε4 −0.538(0.229)
2 APOE-ε4 −0.742(0.350) Age −0.019(0.104) Female 0.090(0.106)

Lastly, the transition pattern described by ζ exhibits a band-
ing structure. That is, patients are likely to transit between
adjacent states. Moreover, α2 and α3 are significant and nega-
tive, implying that the transition pattern between hidden states
exhibits heterogeneity. APOE-ε4 allele carriers are more likely
to transit to a worse state rather than remain in the current one
than noncarriers; carrying two alleles induces a higher risk of
transitioning to a worse state than carrying one allele. This result
is consistent with the existing finding (Eunjee et al. 2015) that
APOE-ε4 alleles increase the risk of developing AD. However,
other covariates, such as age and HIP, do not significantly affect
the between-state transition given APOE-ε4. This result implies
that conditional on APOE-ε4, the direct effects of age and hip-
pocampal volume on the transition probability are weak.

7. Discussion

In this study, we have proposed a double penalized method to
perform order selection and parameter estimation for heteroge-
neous HMMs under the Bayesian framework. In addition, we
have developed a novel MCMC algorithm with an ABRJ sam-
pling scheme to facilitate a joint updating of the order and model
parameters. Multiple simulation studies and an application to
the ANDI dataset demonstrate the superiority of the proposed
method over existing ones and its utility in realistic settings. Fur-
thermore, the proposed model can cope with general situations
where specific covariates simultaneously influence the emission
and transition processes.

The present work can be extended in several directions.
First, we use a single indicator to represent a response or
predictor. For example, we adopt ADAS13 to reflect cognitive
ability in the ADNI data analysis. While in practice, multi-
ple tests can be used to examine cognitive impairment, and
their scores can be integrated into a univariate latent construct
through factor analysis. Such an extension can accommodate
latent responses or covariates, reduce model dimensionality,
and improve interpretability. Second, our conditional regres-
sion model only accommodates a continuous variable. Given

that complex data types are frequently encountered in medi-
cal, social, and psychological sciences, generalizing our method
to incorporate multivariate, functional, or image variables can
considerably enhance model capability. Third, this study mainly
focuses on order selection. However, variable selection is poten-
tially interesting in the presence of high-dimensional variables.
Thus, we can consider additional penalties for simultaneous
order and variable selection. Finally, the two penalties in the
proposed method aim to tackle the possible overfitting prob-
lems without effective strategies to address underfitting issues.
Therefore, we design the jumping in an upside-down direction.
Given this design, developing a penalization method to prevent
overfitting and underfitting simultaneously is of great interest.
However, these possible extensions may raise new theoretical
and computational challenges.

Supplementary Materials

Supplementary Material: The supplemental files include the
Appendix which gives the proof of the propositions in
Section 3, full conditional distributions in Section 4, and
additional numerical results in Sections 5 and 6. (BHMM
Supp.pdf)

R code: The supplemental files for this article include R pro-
grams which can be used to replicate the simulation study
included in the article. Please read file README con-
tained in the zip file for more details. (program pack-
age.zip)
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